
 

 

 

 

 

 

Applied Electromagnetics – Final Project 

Design of a Class A RF Transistor Amplifier 

John Reid, Matthew Drago 

Fall 2017 

 

  



Contents 
Table of Figures: 4 

Introduction: 5 

Background Theory: 5 

Biasing the Transistor: 6 

Stability Circles: 7 

Unilateral Design: Calculating the Gain 8 

Unilateral Gain Circle Calculations: 9 

Bilateral Amplifier Design: 10 

Design and Simulation: 1​2 

Biasing the Transistor: 1​3 

Multisim Simulation: 1​4 

RF Blocking Network: 1​6 

Sonnet Simulations: 20 

Stability Calculations: 22 

Gain Calculations: 2​4 

    RF ​Matching Networks: 2​6 

 Sonnet Simulation​s: 28 

Testing and Analysis: 31 

Bias Network: 31 

RF response: 31 

Other regions of interest: 3​2 

Cascaded System Test: 3​8 

Suggestions for Improvements: 41 

Conclusion: 42 

Appendix A: Images from the BFG403W Datasheet 43 

Appendix B: Matlab code to… 46 

Draw Circles on a Smith Chart: 46 

Plot the Scattering Parameters as a Function of Frequency: 4​7 

Plot the Stability Circles on a Smith Chart: 4​8 

Plot the Input and Output Gain Circles on a Smith Chart: 4​8 



Appendix C: References 50 

Multisim: 50 

Textbooks: 50 

External Plots: 50 

 

  



Table of Figures: 
Figure 1: Schematic of a Class A Amplifier with RF blocking networks and DC blocking capacitors. 5 

Figure 2: Low and high frequency hybrid-pi models for a BJT. 10 

Figure 3: The amplifier under DC conditions 11 

Figure 4: Simulation of the biasing network for the amplifier using computed values. 12 

Figure 5: Simulation of the biasing network for the amplifier using actual component values. 13 

Figure 6: Simulation using a value for R​2​ that makes VCE equal to 2V. 13 

Figure 7: of the RF amplifier. RF blocking networks are outlined in blue. 15 

Figure 8: Frequency response of a 530nH inductor and a 220pF capacitor. 15 

Figure 9: Results of the Sonnet simulation for the inductive transmission line. 18 

Figure 10: Results of the Sonnet simulation for the capacitive transmission line. 19 

Figure 11: Table of magnitude and phase of S-parameters for the BFG403W. 20 

Figure 12: Matlab plot of S​11​ (blue), S​12​ (yellow), S​21​ (red), and S​22​ (purple) in dB as a function of 

frequency. 20 

Figure 13: Smith chart showing stability circles for the transistor at 2.4GHz. The stability circles are 

shown in red and blue. 21 

Figure 14: Smith chart of the Source Gain circles showing that 2dB of gain must be sacrificed to bias the 

transistor. 22 

Figure 15: Smith chart of the Load Gain circles showing that 4dB of gain must be sacrificed to bias the 

transistor. 22 

Figure 16: Results of Sonnet simulation for input matching network transmission line. 23 

Figure 17: Results of Sonnet simulation for output matching network transmission line. 24 

Figure 18: Plot of capacitor self resonance vs. capacitor value. 25 

Figure 19: The PCB layout of the amplifier in Eagle PCB. 26 

Figure 20: Amplifier with 20dB attenuators. 27 

Figure 21: Amplifier forward gain (S​21​) pass-band response for VCC=6V. 27 

Figure 22: Amplifier forward gain (S​21​) pass-band response for VCC=5.44V 28 

Figure 23: Wideband response of amplifier. 29 

Figure 24: Reverse gain (S​12​) of amplifier. 29 

Figure 25: Group delay of amplifier. 30 

Figure 26: Amplifier deviation from linear phase. 31 

Figure 27: Magnitude of S​21​ around the large spike in amplifier gain after the pass-band. 32 

Figure 28: Phase of S​21​ around the large spike in amplifier gain after the pass-band. 32 

Figure 29: Fractal antenna used for transmission and patch antenna used to receive signal 33 

Figure 30: Testing configuration for the cascaded system. 33 

Figure 31: Wideband response of cascaded system. 34 

Figure 32: Passband response of cascaded system. 35 

Figure 33: DC current gain as a function of collector current (figure 3). 37 

Figure 34: Transition frequency as a function of collector current (figure 5). 37 

Figure 35: MSG as a function of collector current (figure 7). 38 

Figure 36: Gain as a function of frequency where I​C​ = 3mA and V​CE​ = 2C (figure 8). 38 



Introduction: 
    In applications where data is transmitted wirelessly, there is a specific set of sub-circuits that the 

signal must pass through before being transmitted. First the signal must be filtered to remove any 

frequencies out of the signal bandwidth to avoid contaminating the information. As is passes through 

the filter, the signal loses some of strength and needs to be amplified. Only after it is amplified can it 

then be transmitted through an antenna. 

This project will focus on the design, construction and testing of an RF amplifier that will operate in the 

WiFi bandwidth around 2.4 GHz. The amplifier design specifications are given below: 

 

Bandwidth 
(GHz) 

Supply Voltage 
(V) 

Minimum Gain 
(dB) 

Variation at BW 
(+/- dB) 

Center Freq. 
(Ghz) 

2.401-2.473 +6 V +10 dB 0.5 dB 2.437  

 

*Note that all Matlab Code uses functions obtained from the ‘RF Toolbox’ App in Matlab* 

Background Theory: 
    The RF amplifier in this report can be examined like a 2-port network. As such, the Scattering 

Parameter (S-parameters) transformation matrix becomes the basis of all the calculations. For simplicity, 

the design will be a simple Class A transistor amplifier. 

 

Figure 1: Schematic of a Class A Amplifier with RF blocking networks and DC blocking capacitors. 



 

The schematic for the amplifier that will be constructed in this project is shown in Figure 1. The 

capacitors C3 and C4 are DC blocking capacitors used to isolate the amplifier from any external biasing. 

Inductors L1 and L2 form the RF blocking network that will prevent the 2.4GHz signal from escaping into 

the DC source. 

    This transistor used in this design will be the BFG403W. It is a 17GHz wideband transistor with a DC 

current gain of 80. This model was chosen to compare with other RF transistor amplifier designs. In a 

previous design, the amplifier did not perform as well as expected, having only 3dB of gain in the 

passband. This gain was then improved to approximately 6dB in the passband by removing a shunt 

capacitor that was added to increase the amplifier stability. Due to these difficulties, this design will 

attempt to maximize the amplifier gain by adjusting some of the biasing parameters. 

 

Biasing the Transistor: 
    For the amplifier to function properly, the transistor needs to be biased. Using the DC model in Figure 

3, R​C​ is set using values for V​CE​ and I​C​ chosen from the datasheet. Once these values are chosen, the 

value of R​2​ calculated using the formula 

R2 = I2

V B  

 

where ​I​2​ is the current flowing through resistor R​2​.Typically for this type of biasing network, ​I​2​ is chosen 

to be approximately five times the base current. Thus 

hR2 = V B
5IB

= V B
5IC fe  

Next the value for R1 is calculated using the equation 

)hR1 = I +I2 B

V −VCE BE = 6IB

V −VCE BE = ( 6IC

V −Vcc BE
fe  

Finally the collector resistor is calculated using the formula 

RC = I +IC 1

V −Vcc CE = I (1+ )C
6
hfe

V −Vcc CE  

 

Stability Circles: 
    The next consideration in amplifier design is the stability of the system. Under certain conditions it is 

possible that an amplifier may apply gain to unwanted reflected signals and cause oscillation. To prevent 

this, there are different stability techniques which can be applied. An excellent graphical tool which can 

be used to stabilize an amplifier design is the stability circles method. This works by mapping a circle for 

both the output stability and input stability, with each circle created using the S-parameters and input 



and output reflection coefficients. These circles can be plotted along with a smith chart centered at the 

origin, with any overlapping regions representing impedances that would produce instability. The 

amplifier will be designed to have maximum stability across the entire range of operation; therefore our 

objective is to move the regions of instability, meaning any region of the Smith Chart that falls within the 

input/output stability circles, completely off the Smith Chart to maximize the stability over the desired 

bandwidth. 

      To calculate these stability circles, we must determine their center points and radius values, 

beginning with the variable Δ that is defined as 

S SΔ = S11 22 − S12 21  

The center point for the output stability circle can then be calculated as 

CL =
|S |+|Δ|2

22
2

S −S Δ*
22 11

*
 

The radius of the output stability circle is determined by the equation 

|RL = | S S12 21

|S |+|Δ|2
22

2  

Likewise, the input stability circle can be calculated as 

CS =
|S |+|Δ|2

11
2

S −S Δ*
11 22

*
 

The radius of the input stability circle is determined by the equation 

|RS = | S S12 21

|S |+|Δ|2
11

2  

 

 

Unilateral Design: Calculating the Gain 
   Through the unilateral design method, computing the gain becomes simple under the assumption that 

S​12​ = 0. This is the Unilateral Gain assumption. Although this significantly simplifies the calculations 

needed to determine the amplifier gain, the tradeoff is that it increases the uncertainty of the gain being 

calculated. Under this assumption, the total gain of the amplifier is given by the equation 

Gtu = GS * G0 * GL  

Where G​S​ is the Source Gain, and is given by the equation 

GS = 1−|Γ |S
2

|1−S Γ |11 S`
2  



G​0​ is the Maximum Power Gain of the transistor, and G​L​ is the Load Gain calculated from the formula 

GL = 1−|Γ |L
2

|1−S Γ |22 L
2  

where the input, output, load and source reflection coefficients are given by 

,   ΓΓS = S*
11 = Γ*

in  L = S*
22 = Γ*

out  

 

 

Because of the increased potential for error in our gain calculations due to the unilateral assumptions, it 

is necessary to calculate what is called the unilateral figure of merit, which provides boundary conditions 

to estimate the range of variation in gain calculations due to error. These boundary conditions are 

calculated by first solving for U with the equation 

U = S S S S| 11|| 22|| 12|| 21|
(1− S )(1− S )| 11|2 | 22|2

 

 

Where the upper bound can be calculated with the equation 

U upper = 1
(1−U )2  

and the lower bound can be calculated with the equation 

U lower = 1
(1+U )2  

These values can then be converted into decibels in order to obtain the maximum and minimum 

boundaries for the overall gain of the system.  

Another formula that is commonly used to get an indication of the amplifier’s stability is known as 

Rollett's stability factor, or the K-factor. A K-factor that is greater than one means that the amplifier is 

unconditionally stable. If K is less than 1, then there may be instability problems. Below is the equation 

for K-factor, which utilizes the we discussed earlier.Δ  

K =
2 S S| 21 12| 

1− S − S + Δ| 11|
2 | 22|

2
| |2

 

 

Unilateral Gain Circle Calculations: 
 



    In RF Amplifier design, one must design an RF Matching Network in order to appropriately match the 

impedances going into and out of the transistor with the impedances of the input and output SMA 

connectors. These SMA connectors have a purely resistive impedance of 50 Ω, therefore to properly 

match our input and output impedances and simplify our design, we will use gain circles to determine 

when the transistor source and load impedances will be purely resistive and use a quarter wavelength 

transmission line to match these resistive impedances to the desired 50 Ω of the connectors. Gain circles 

work by centering around the point of maximum gain, with each circle sacrificing 1 dB from the 

maximum gain point. The objective is to determine how much gain needs to be sacrificed from the 

maximum in order to achieve a value that crosses the x-axis and is therefore purely resistive at that 

point. 

    Under the assumption of Unilateral Gain, the center point of the Source Gain circle is given by the 

formula 

CGS = g ΓS* S

1−|Γ | (1−g )S
2

S
 

And the radius of the Source Gain circle is given by 

rGS =
1−|Γ | (1−g )S

2
S

(1−|Γ | )S
2 √1−gS  

The value of is determined by the equationgs  

 gS = GS
1−|Γ |S

2  

G​S​ is the source gain discussed previously in this section. Similarly, the center of the Load Gain circle is 

given by 

CGL = g ΓL* L

1−|Γ | (1−g )L
2

L
 

and the radius of the Load Gain circle is given by 

rGS =
1−|Γ | (1−g )L

2
L

(1−|Γ | )L
2 √1−gL  

where 

 gL = GL
1−|Γ |L

2  

G​L​ is the load gain discussed previously in this section. 

    Although the maximum values for G​S​ and G​L​ are calculated from the formulas above, the actual values 

for G​S​ and G​L​ that will be used in the design of the amplifier will be lower. The use of gain circles allows 

the design to sacrifice some of the amplifier gain in order to use purely resistive components in the 



biasing network. This is essential as the transistor must be biased at DC, and only purely resistive 

components can do this. 

 

Bilateral Amplifier Design: 
    Unlike the Unilateral gain amplifier design, the Bilateral amplifier design makes no assumptions about 

the S-parameters. As a result the calculations are more accurate, but also more complex. This means 

that the source and load reflection coefficients need to be recalculated using simultaneous conjugate 

matching. In this design, the assumption that and  no longer applies. If theΓs* = S11 Γ*
L = S22  

simultaneous conjugate match doesn’t exist, then the device could be unstable. The formulas for the 

matched source and load reflection coefficients are 

 ΓMS = B1
2C1

− 2
1√( ) ( )B1

C1

2
− 4 C*

1
C1

 

 

Where B1 and C1  are calculated by 

B1 = 1 − |S |22
2 − |Δ|2 + |S |11

2  

 C1 = S11 − S*
22 * Δ  

The formula for the matching load reflection coefficient is 

 ΓML = B2
2C2

− 2
1√( ) ( )B2

C2

2
− 4 C*

2
C2

 

Where 

 B2 = 1 − |S |11
2 − |Δ|2 + |S |22

2  

 C2 = S22 − S*
11 * Δ  

And the constant Δ is defined previously in the discussion of stability. Thus the equations for 

simultaneous matching are 

Γ*
MS = S11 + 1−S Γ22 ML

S S Γ12 21 ML  

Γ*
ML = S22 + 1−S Γ11 ML

S S Γ12 21 ML  

 



 

Design and Simulation: 
    The new design for the amplifier will include some adjustments from previous designs in order to 

squeeze out as much gain as possible. As was done in previous designs, and for comparison with said 

designs, this amplifier will use the BFP403W transistor. It is, however, worth noting that this transistor is 

not the ideal transistor for an RF amplifier at WiFi frequencies (2.4GHz) since the transition frequency is 

2GHz. 

    Before biasing the transistor there are several details that must be addressed. First it is important to 

note that the transistor current gain, ​h​FE​, given in the datasheet is the ​DC​ current gain. At high 

frequencies, the parasitics of the transistor begin to have significant effects on the current gain which 

cannot be ignored. Specifically the feedback capacitance between the collector and base, C​μ​, becomes 

very large and begins to decrease the transistor current gain (see Figure 2).  

 

 

 

Figure 2: Low and high frequency hybrid-pi models for a BJT. 

 

More concretely the DC current gain, ​h​FE​, is nominally 80, whereas in a previous report the actual 

current gain at 1GHz was about 40. 

    Another important not is the maximum gain that the transistor can produce. From Figure 33 (see 

Appendix A) it can be seen that the Maximum Stable Gain (MSG) at 2.4GHz is approximately 23dB, while 



according to Figure 34 (see Appendix A) the Forward Power Gain (S​21​) at 2.4GHz is approximately 14dB. 

This means that under ideal conditions the amplifier should produce a maximum gain of 14dB.  

 

Biasing the Transistor: 
    The first design task will be to bias the transistor. The DC model used for biasing is shown in Figure 3. 

In order to obtain as much gain as possible, some of the transistor circuit parameters will be slightly 

modified. The transistor properties were measured with a collector-emitter voltage, V​CE​, of 2V, so this 

will be maintained. The transistor will operate off of a 6V supply voltage instead of the standard 5V 

supply. 

    The most significant change will be the collector current, I​C​, which will be 4mA. According to Figure 31 

(see Appendix A), increasing I​C​ from 3mA to 4mA will decrease the transistor gain, ​h​fe​, from roughly 78 to 

75. However increasing I​C​ also shifts the unity gain frequency at 2GHz to its maximum value and also 

increases the Maximum Stable Gain (MSG) by approximately 1dB (see Figure 35). All together this could 

push the total gain of the amplifier up one or two decibels. 

 

 

Figure 3: The amplifier under DC conditions 

 

    Under the conditions above, and using the equations shown previously, the value of the collector 

resistor, R​C​, is found to be 



70ΩRC = 6V −2V
4mA(1+ )6

40
= 8  

under the assumption that ​h​FE​ is 40. Likewise R​1​ is found to be 

.2kΩR1 = 6(0.1mA)
2V −0.7V = 2  

And R​2​ is 

.4kΩ  R2 = 0.7V
5(0.1mA) = 1  

This combination of resistor values will set the collector-emitter voltage close to 2V. 

 

Multisim Simulation: 
    Next the amplifier must be simulated to verify that the biasing is functioning as expected. The 

simulation was performed in Multisim. Placing the biasing circuit with the calculated component values 

in multisim yielded the results in Figure 4. 

 

 

Figure 4: Simulation of the biasing network for the amplifier using computed values. 

 

The closest resistor the ProtoLab had to 870Ω was 820Ω, so that resistor value replaced the calculated 

one. The simulation was redone, and the results are shown in Figure 5. In both of these simulations, the 

collector-emitter voltage was approximately 2.4V instead of the 2.0V desired. Adjusting the value of the 

2.2k resistor to 1.6k fixed this issue and changed the collector-emitter voltage to the desired 2V. 



    Since the collector-emitter voltage isn’t the desired voltage and biasing network won’t change from 

the configuration in Figure 5, the currents need to be recalculated. The simplest current to calculate is 

the base current . Rearranging the formula used to calculate  gives the solutionIB R2  

22μAIB = 5R2

V BE = 1  

where ..2k  R2 = 2  

 

Figure 5: Simulation of the biasing network for the amplifier using actual component values. 

 

 

Figure 6: Simulation using a value for R​2​ that makes VCE equal to 2V. 



 

Working backwards the formula for  can be rearranged to calculated the collector-emitter voltageR1  

 and has the formV CE  

R I .456V  V CE = V BE + 6 1 B = 2  

Which is in close agreement with the results in Figure 4 and Figure 5. Finally the collector current in 

calculated using the formula 

I .59mAIc = Rc

V cc−V CE − 6 B = 3  

This is higher than the collector current specified in the datasheet, but not the 4mA desired. This means 

that the difference in gain from using a higher collector current will not be as noticeable. 

 

RF Blocking Network: 
    The RF blocking network is crucial to the amplifier because it prevents the signal from traveling to the 

power supply and ground plane, ensuring that all of the data passes to the output of the amplifier. The 

series inductors L​1​ and L​2​ are normally called RF Chokes (RFC) and serve to isolate the input and output 

signals from source, while the shunt capacitors C​1​ and C​2​ short out all the remaining high frequencies 

(see Figure 7). This amplifier will use distributed components for the RF blocking networks. As such, the 

values of the series inductors and shunt capacitors will be calculated using transmission line theory. 

    The series inductors and shunt capacitors will both be quarter wavelength transformers. This because 

an inductive transmission line with a length of one quarter of the center frequency behaves like an open 

circuit for the center frequency and multiples of it, while a capacitive transmission line with a length of 

one quarter of the center frequency behaves like a short for the frequencies that manage to pass 

through (see Figure 8). The length of the transmission lines is calculated using the formula 

 λ = f
vp = c

f√εef f
 

Where  

(1 ) ,  εef f = 2
ε +1r + 2

ε −1r + w
12h − 2

1

 h
w > 1  

[(1 ) 0.04)(1 ) ],  εef f = 2
ε +1r + 2

ε −1r + w
12h − 2

1

+ ( − h
w 2  h

w < 1  

 



 

Figure 7: of the RF amplifier. RF blocking networks are outlined in blue. 

 

Figure 8: Frequency response of a 530nH inductor and a 220pF capacitor. 

 

and  for FR-4 is 4.6. Assuming a lossless transmission line model, the characteristic impedance of theεr  

transmission lines is given by the equations 

,  Z0 =
Z f

(1.393+ + ln ( +1.444) )√εef f h
w

3
2

h
w  h

w > 1  



ln( ),  Z0 =
Z f

2π√εef f w
8h + w

4h  h
w < 1  

Where  is the impedance of free space,  is the effective dielectric constant of the PCB (in this case Z f εef f  

it is FR-4), ​h​ is the thickness of the PCB, and ​w​ is the width of the trace. The impedance of free space is 

76.8Ω  Z f = √ ε0

μ0 = 3  

    Calculating the length of the inductive transmission line is straight forward. Since the inductance of a 

microstrip line increases as the width decreases, the trace should be as narrow as possible. In practice 

this is limited by the fabrication limits of the foundry. This amplifier will be created by the LSU ProtoLab, 

and the minimum trace width it has successfully milled was 6mils. However, the machine itself is only 

guaranteed to work for widths of approximately 12mils, so the inductive lines will be 8mils wide. 

    Using this width and the fact that the PBC will be approximately 60mils thick, the effective dielectric 

constant is calculated to be . From this the wavelength is calculated to be.043εef f = 3  

1.66mm  λ = c
f√εef f

= 7  

Thus the length of the quarter wavelength RF choke is 

7.9mm 05.3mils  l = 1 = 7  

And the characteristic impedance is 

ln( ) 40.78ΩZ0 =
Z f

2π√εef f w
8h + w

4h = 1  

    The capacitive transmission line is slightly more difficult. The purpose of the shunt capacitor is to short 

out all the frequencies that make it through the inductor. Because of this the series inductor and shunt 

capacitor function as a low pass filter, where the inductive transmission line functions as a resistor with 

a resistance equal to the characteristic impedance of the inductive transmission line,  .40.78Ω  Z0 = 1  

Under this assumption, the corner frequency for the low pass filter is given by the formula 

f 0 = 1
2πRC  

Choosing the corner frequency to be 240MHz, capacitance is therefore 

.7pFC = 1
2πf R0

= 4  

Using the equation for an ideal capacitor, the impedance of the trace is 

4.1ΩZ0 = 1
2πf C0

= 1  



Table 2-20 in the RF textbook gives the impedance as a function of the width-to-height ratio. Using the 

calculated value of  and the dielectric constant of FR-4, , the width-to-height ratio was Z0 .6  εr = 4  

estimated to be approximately 9. Since the width-to-height ratio is greater than 2, the exact value of the 

ratio is calculated from the formula 

{B n (2B ) [ln (B ) .39 ]} 0.043h
w = π

2 − 1 − l − 1 + 2εr
εr−1 − 1 + 0 − εr

0.61 = 1  

Where  Since the thickness of the PCB is set to 60mils, the width is thus 600mils.9.16.B =
Z πf

2Z0√εr
= 1  

This means the effective dielectric constant is , and thus the wavelength is.015  εr = 4   

2.38mm 456.0 mils  λ = c
f√εef f

= 6 = 2  

This means that the length of the shunt capacitor is 

14 mils  l = 6  

As a check for both the calculations and the Sonnet simulations to follow, the characteristic impedance 

of the capacitive transmission line is 

4.395ΩZ0 =
Z f

(1.393+ + ln ( +1.444) )√εef f h
w

3
2

h
w = 1  

which is close enough to the desired 14.1Ω. 

    It is worth noting that Table 2-1 in the textbook by Ludwig and Bogdanov lists formulas for calculating 

the capacitance and inductance per unit length of a parallel plate transmission line. These formulas do 

not apply to the calculations for the RF blocking network for the following reasons. The inductive trace is 

very narrow, so the electric field between the copper trace and the ground plane is dominated by fringe 

effects, thus violating one of the important assumptions for a parallel plate transmission line. The 

formula for the capacitance per unit length is fairly accurate for very wide traces, but the inductance of 

these traces is not. Thus these formulas should only be used as guidelines and not relied upon. 

 

RF Blocking Network Sonnet Simulations: 
    In order to verify that the calculations for the RF blocking network are correct, the transmission lines 

must be simulated. The simulations were performed in Sonnet Suite. The first transmission line to be 

simulated was the inductive line. The dimensions of the simulated transmission line were ​l​=705 mils and 

w​=6 mils. The simulation was performed with cell sizes of 0.25mil by 0.25mils for greater accuracy. The 

results are shown in Figure 9. Strictly speaking, since the inductive transmission line is a series 

component, the simulation should have included a port on both ends of the transmission line. However, 

when the simulation included a second port, there was no noticeable change in the simulation results. 



 

 

 

Figure 9: Results of the Sonnet simulation for the inductive transmission line.  

 

    Note that the previously calculated characteristic impedance and  for the inductive transmissionεr  

line differ from the simulated impedance and  in Figure 9. This doesn’t matter because it is a quarterεr  

wavelength transmission line. If the calculated characteristic impedance for the transmission line is 

plotted on a Smith chart normalized to 141Ω, then it is clear that the calculated characteristic 

impedance is still going from a very low impedance to a very high impedance, and ultimately all the 

transmission line needs to do is block frequencies in the passband. Thus this is good enough since we 

don’t need to block everything. 

 



 

 

Figure 10: Results of the Sonnet simulation for the capacitive transmission line.  

 

    The capacitive transmission line simulation was less troublesome. The calculated dimensions for this 

transmission line were ​l​=614 mils and ​w​=600 mils, and the cell size was again 0.25 mils by 0.25 mils. As 

seen in Figure 10, the simulation matched the calculated values very well. 

 

Stability Calculations: 
    In order to do any high frequency design, it is necessary to have the Scattering Parameters 

(S-parameters). In practice, determining the S-parameters is called “parameter extraction” and, while 

possible, it is exceedingly difficult. One way to calculate the S-parameters for a device is to use the 

hybrid-pi parameters (h-parameters) and then convert them to the S-parameters with Matlab. This 

method allows the S-parameters to be directly calculated from values given on the datasheet. For this 

amplifier, this method is unnecessary as the table of S-parameters for the BFG403can be taken from the 

RF textbook written by White that was used in the previous report. The table of S-parameters for a wide 

range of frequencies is shown below in Figure 11. 



 

BFG403W V​BE=0.8791V V​CE=2.0V  I​B=43.08μA I​C=3.0mA 

 S11  S21  S12  S22  

Freq (GHz) Mag Angle Mag Angle Mag Angle Mag Angle 

1 0.787 -29.852 6.441 138.225 0.012 67.938 0.947 -20.577 

1.2 0.754 -35.069 6.204 130.774 0.014 64.926 0.931 -24.257 

1.4 0.718 -39.992 5.959 123.705 0.016 61.999 0.914 -27.815 

1.6 0.68 -44.782 5.714 116.841 0.017 59.838 0.897 -31.212 

1.8 0.642 -49.349 5.461 110.315 0.019 57.764 0.88 -34.551 

2 0.609 -53.651 5.223 104.247 0.02 56.296 0.863 -37.812 

2.2 0.571 -57.579 4.984 98.269 0.022 55.082 0.845 -40.963 

2.4 0.539 -61.74 4.775 92.619 0.023 54.271 0.829 -44.054 

2.6 0.505 -65.624 4.561 87.157 0.024 53.509 0.812 -47.098 

2.8 0.481 -70.015 4.392 82.018 0.026 52.792 0.796 -50.106 

3 0.456 -74.228 4.234 77.005 0.027 52.22 0.78 -53.098 
 

Figure 11: Table of magnitude and phase of S-parameters for the BFG403W. 

 

 

 

 

Figure 12: Matlab plot of S​11​ (blue), S​12​ (yellow), S​21​ (red), and S​22​ (purple) in dB as a function of frequency. 



  Using the values for the S-parameters at 2.4GHz, it is then possible to determine the values of the input 

and output stability circles. ​The Matlab code​ ​Stability_Circles.m​,​ ​which contains the previously derived 

equations for the stability circle calculations, is used to obtain the following plot shown in figure 13. 

 

 

Figure 13: Smith chart showing stability circles for the transistor at 2.4GHz. The 
stability circles are shown in red and blue. 

 

From these results we can see that at the desired frequency range, the stability circles are located 
completely off the Smith Chart and therefore allow the transistor to operate successfully over our 
desired bandwidth at any impedance values without being unstable. 



 

Gain Calculations: 
    Using the formulas derived in the previous section for Unilateral Gain Circles, we compute the 

following values for K, Gs, Go, Gl: 

.4095  Gs = 1  2.8006  Go = 2  .195  Gl = 3  .1982  K = 1   

when each of the gain values is converted into dB, we then can calculate the overall gain in dB as 

0.119 dB  Gtu = 2   

The K-factor > 1 confirms our calculations that our amplifier design will be unconditionally stable over 

the desired frequency range. Upon running the matlab code ​Input_OutputGainCircles.m ​we generated 

the following plots for Input and Output Gain Circles, where each circle going outwards from the 

innermost circle corresponds to -1 dB of gain sacrificed from the maximum gain values calculated. 

 

Figure 14: Smith chart of the Source Gain circles showing that 2dB of gain must be sacrificed to bias the transistor. 



 

Figure 15: Smith chart of the Load Gain circles showing that 4dB of gain must be sacrificed to bias the transistor. 

 

From these gain circle simulations,we can observe that -2dB of gain is lost to cross the real axis for the 

input gain circles and -4dB of gain is lost to cross the real axis for the output gain circles. From the Smith 

Chart plots above we determined the input impedance and output impedances to be  

7.75 Ω   Z 3.3 Ω  Z in = 3 out = 8  

We now use these new impedances to calculate the dimensions for the Matching Network quarter 

wavelength transmission lines. 

RF Matching Network: 
    In order to properly match the impedances from the transistor to the SMA connectors, we will design 

a quarter wavelength transmission line for the input and output impedances of the transistor to match 

the impedance of the connectors.  

The length of the transmission lines will depend on the wavelength ƛ which depends on , so first weεef f  

calculate the width using the following formula, where​ h ​is the FR-4 Board depth and is the FR-4 εr  

permittivity = 4.6 

 = 60 mils = 1.524 mm h  π 0uo = 4 * 1 −7 .85 0εo = 8 * 1 −12 4.6 εr =  



  w =  h
Z line√ uo

ε εo r
 

 

For the input transmission line, w1 = 133.97 mils. For the output transmission line, w2 = 69.33 mils.  

We can then calculate for  and the quarter wavelength ƛ/4  using the formulas discussed previouslyεef f  

in this report and attain the following results: 

.228εef f  in = 3  .0154εef f  out = 3   = 696.04 mils in4
ƛ  = 702.23 mils out  4

ƛ  

we can calculate what the desired impedance of the transmission lines will be by using the 50 Ω  

impedance of the SMA connectors (Zo) and the Zin and Zout impedances calculated previously. 

3.3ΩZ line in =
Z f

(1.393+ + ln ( +1.444) )√εef f h
w

3
2

h
w = 4   

= 3.95ΩZ line out =
Z f

(1.393+ + ln ( +1.444) )√εef f h
w

3
2

h
w = 6  

 

RF Matching Networks Sonnet Simulations: 
    With the calculated widths, lengths and impedances we run Sonnet Simulations of each transmission 

line to determine the accuracy of our calculations and any changes needed to meet the desired 

impedance.  

The final input matching network dimensions were mils and w = 130 mils and produced the95  l = 6  

following simulation results. 

 



 

Figure 16: Results of Sonnet simulation for input matching network transmission line. 

For the  final output matching network, the  dimensions were mils and w = 68 mils and produced02  l = 7  

the following simulation results. 

 

 

 

Figure 17: Results of Sonnet simulation for output matching network transmission line. 

 

The sonnet simulation results compared to the calculated results are shown below: 

 Impedance (ohms) Width (mils) Length (mils) Eeffective 

Calculated Input 43.12 133.97 696.04 3.228 

Sonnet Results 43.318 130 695 3.153 

Calculated Output 63.95 69.33 702.23 3.0154 



Sonnet Results 64.1018 68 702 3.066 

 

These calculations show our final values to be acceptable in achieving the design specifications and are 

ready to be implemented in the PCB design. The final calculations necessary before the PCB design 

begins is to determine the values of the decoupling capacitors, which will be explained shortly. 

 

Figure 18: Plot of capacitor self resonance vs. capacitor value. 

    The decoupling capacitors only need to have a low impedance at the amplifier’s operating frequency. 

The self resonance of the capacitor will lower the impedance further. From Figure 18 it can be seen that 

the self resonance of the decoupling capacitors will occur at the operating frequency of the amplifier 

when the capacitors have a value of approximately 10pF. Strictly speaking this level of attention to the 

decoupling capacitors is unnecessary since the amplifier will work fine as long as the impedance of the 

capacitors is below roughly 5-10Ω at the operating frequency. 

    Once the transmission lines were fully simulated, everything was ready to put onto a PCB. The PCB 

was designed in Eagle PCB. The board is shown in Figure 19. 

 



 

Figure 19: The PCB layout of the amplifier in Eagle PCB. 

 

Testing and Analysis: 

Bias Network: 

    The first test for any transistor amplifier is the biasing. With the supply voltage set to 6V, the 

base-emitter voltage was 0.851V and the collector-emitter voltage was 3.3V. This is almost 1V higher 

than the simulated collector-emitter voltage, but this isn’t a bad thing. This means that that the 

amplifier can make almost full use of the entire voltage range from 0-6V, which is what is normally 

desired when designing any kind of amplifier. After the biasing test, it was time to test the frequency 

response of the amplifier. 

 

RF response: 
    In order to safely test the amplifier circuit, two 20dB attenuators were connected to the PCB, one to 

the input and one to the output (see Figure 20). This was to prevent any unforeseen gain spikes from 

damaging the equipment. The first test was the forward voltage gain S​21​ with the designed supply 

voltage of 6V. The amplifier had a forward voltage gain of approximately 5.5dB at the center frequency. 

There was also a ripple of slightly over 0.2bB over the entire passband. In all amplifier frequency sweeps 

starting with Figure 21 marker 1 is the center frequency of the passband, and markers 2 and 3 mark the 

lower and upper edges of the passband.  

 



 

 

Figure 20: Amplifier with 20dB attenuators. 

 

 

 

Figure 21: Amplifier forward gain (S​21​) pass-band response for VCC=6V. 

 

    After the initial measurements came the tuning. By varying the supply voltage, the gain of the 

amplifier also changed noticeably. After adjusting the supply voltage the optimum supply was found to 



be 5.44V, and the gain increased to 6.5dB. The voltage ripple also increased to slightly under 0.3dB over 

the passband. 

 

 

Figure 22: Amplifier forward gain (S​21​) pass-band response for VCC=5.44V 

 

Figure 23: Wideband response of amplifier. 



    The next measurement was a check to view the wideband response of the amplifier (see Figure 24). 

With the exception of the peaks at 2.36Ghz and 2.76GHz (markers 4 and 5) and the immediate 

surrounding regions, the amplifier had less then 1.5dB of variation over the range of 1.5GHz to 2.8GHz. 

The two spikes in gain will be discussed later in the report. The high frequency roll-off is also worth 

noticing. The BFG403W is a wideband transistor, so the roll-off that starts around 2.8GHz is due to the 

design of the amplifier. The exact portion of the design that causes this roll-off is unknown. 

    Another very important quantity to measure is the reverse gain S​12​ of the amplifier. There is a change 

that some of the input signal could be reflected back from the output of the amplifier and then be 

further amplified and fed to the input device. This would almost definitely destroy the device which is 

not desired. The measurements of S​12​ are shown in Figure 24.  

 

 

Figure 24: Reverse gain (S​12​) of amplifier. 

 

    The measurement of group delay and phase are also very important to the design of a useful 

amplifier. For obvious reasons, the group delay should be kept as short as possible. As seen in previous 

labs, it is also crucial that the phase be linear over the passband since a perfectly linear phase means all 

the information is arriving at the destination at the same time. If the group delay is sufficiently 

nonlinear, then information could arrive at the destination in the incorrect order. The plots of group 

delay and phase are shown in Figure 25 and Figure 26. 



 

 

Figure 25: Group delay of amplifier. 

 



 

Figure 26: Amplifier deviation from linear phase. 

 

    As seen in Figure 25, the group delay at the center frequency is approximately 0.7ns. The phase 

response in Figure 26 looks very bad at a first glance, but the grid on the plot is in increments of 1 

degree. This means that the total phase variation over the bandwidth it approximately 1.1 degrees, 

which is very linear. This means the amplifier is both very fast and has a phase velocity that doesn’t vary 

significantly over the passband. 

 

Gain Spikes near the Passband: 
    The region between 2.72GHz and 2.80GHz has some rather strange behavior (see Figure 27). The gain 

steadily rises, and then suddenly falls before leveling out again. The phase in this frequency range (see 

Figure 28) also has a corresponding kink in it. This behavior is most likely due to the self resonance of the 

capacitive transmission lines. The calculated capacitance of these shunts was 4.7pF. If this value is 

plotted on the graph of resonant frequency vs. capacitance in Figure 18, it is seen that the point for 

4.7pF and 2.4GHz lies very close to the data for self resonance. From this it can also be theorized that 

the other spike in the gain that occurs at 2.358GHz is the self resonance of the inductive transmission 

line. This conclusion, however, cannot be supported by a similar plot and therefore is merely 

speculation.  

 



 

Figure 27: Magnitude of S​21​ around the large spike in amplifier gain after the pass-band. 

 

 

 

Figure 28: Phase of S​21​ around the large spike in amplifier gain after the pass-band. 



 

 

Cascaded System Test: 
    As a final experiment, the amplifier was cascaded with a filter and an antenna to test if the amplifier 

could amplify a test signal from the network analyzer enough to be received by a second antenna (see 

Figure 30). The antennas used were a fractal antenna for the transmission and a patch antenna for 

receptions. The fractal antenna had a VSWR of 1.3, while the patch antenna had a VSWR of around 1.7 

(see Figure 29). 

 

 

Figure 29: Fractal antenna used for transmission and patch antenna used to receive signal 

 



 

Figure 30: Testing configuration for the cascaded system. 

 

The filter was a Chebyshev filter with 0.5dB of ripple in the passband. The filter missed the center 

frequency of the WiFi band on the high end, but was to pick up the upper half of the WiFi band. 

    The wideband response of the cascaded system is shown in Figure 31 with the antenna separated by 

about 5 inches. The double peak structure is a bit concerning, but upon closer inspection it can be seen 

that the second peak occurs around 2.7GHz which is close to the resonant frequency of the distributed 

shunt capacitors. This means that if this cascaded configuration is to be used for any practical purposes 

the signal must be filtered after being received in addition to before being amplified. 

    The response of the system in the passband with an antenna separation of approximately 5 inches is 

shown in Figure 32. From this plot it is clear that there is approximately 3dB of ripple over the entire 

bandwidth and that the response is very smooth. All together, this system functioned well beyond 

expectation. 

 



 

Figure 31: Wideband response of cascaded system. 

 

 

Figure 32: Passband response of cascaded system. 



Suggestions for Improvements: 
    This amplifier design has squeezed out as much gain from the transistor as it can. Thus changing the 

transistor will yield the largest increase in gain. In the initial research for the amplifier, the Infineon 

BFP640FESD was discovered. This transistor has a few advantages over the BFG403W, the most 

noticeable one being that it was designed to operate at WiFi frequencies. As a result this transistor will 

exhibit much better behavior over the operating bandwidth. 

    Another important discovery this semester was made during the testing of the 3dB Chebyshev filter. 

This group discovered that the milling machine in the LSU Protolab does not accurately cut the PCB 

traces to the exact specified widths. This is obviously a big problem when the width of a trace 

determines the behavior of a transmission line. For more information, see the report written for the 3dB 

Chebyshev filter in Fall 2017. 

    Finally it is strongly recommended that the designer estimate the self resonant frequency of all 

distributed components to ensure that a resonance does not occur in or near the region of interest. In 

the cascaded circuit test, the double peak structure that was received by the patch antenna was due to 

the self resonance of the shunt capacitors. This shows that filtering before transmission is not always 

enough. Future designs should also include a filter on the receiver end to filter out spurious signals like 

the second undesired peak. It also might be interesting to include measurements of resonance 

frequencies as a function of transmission line dimensions in future labs. 

Conclusion: 
    The design and implementation of the Class A RF amplifier was a resounding success. The design was 

able to meet almost all of the desired specifications. The pass-band ripple was 0.3dB, which was less 

than the required 0.5dB. The phase was linear to within 1.1 degrees over the entire bandwidth. The 

group delay was approximately 0.7ns at the center frequency. Also very importantly there was no less 

than 10dB of attenuation for the reverse gain. Furthermore when the amplifier was cascaded with a 

Chebychev filter and a fractal antenna, the cascaded system was able to transmit the test signal from 

the network analyzer to a patch receiver antenna. 

    The only specification that was not met was gain. Unfortunately this design was only able to output 

approximately 6.5dB of gain over the entire bandwidth. This was due to the choice of transistor. The 

BFG403W was not intended for wireless transmission over WiFi frequencies as the forward gain (S​21​) 

begins to roll off around 2GHz. This means that the maximum gain the transistor could provide at 

2.4GHz is approximately 14dB, and 7dB need to be sacrificed in order to bias the transistor. 

 

 

 



  



Appendix A: Images from the BFG403W Datasheet 
 

 

Figure 33: DC current gain as a function of collector current (figure 3). 

 

 

Figure 34: Transition frequency as a function of collector current (figure 5). 



 

 

 

Figure 35: MSG as a function of collector current (figure 7). 

 

 

 

Figure 36: Gain as a function of frequency where I​C​ = 3mA and V​CE​ = 2C (figure 8). 



  



Appendix B: Matlab code to…  

Draw Circles on a Smith Chart: 
function smith_circles(centre, radius, colour_linestyle, segments) 

%SMITH_CIRCLES Draw circles on a Smith Chart. 

%   SMITH_CIRCLES(CENTRE, RADIUS, COLOUR_LINESTYLE, SEGMENTS) has the 

%   following parameters: 

%   - CENTRE: the centres of the circles (a complex number), 

%   - RADIUS: the radii of the circles, 

%   - COLOUR_LINESTYLE: one of the standard Matlab colour/linestyle 

%     combinations that will be used to draw the circles, and 

%   - SEGMENTS: the number of segments used to draw the circles. 

%   CENTRE and RADIUS must be row vectors with the same number of elements. 

%   COLOUR_LINESTYLE and SEGMENTS are optional.  RADIUS must be positive and 

%   purely real, and SEGMENTS must be an integer. 

% 

%   Examples: 

%     smith_circle(0.5 + j*0.7, 1.5) 

%     smith_circles([ 0 -0.5 0.5 -j*0.5 j*0.5 ], [ 1 0.5 0.5 0.5 0.5 ]) 

%     smith_circles(randn(1, 100)+j*randn(1, 100), randn(1, 100)) 

%     smith_circle(0.1 - j*0.3, 0.2, 'r--') 

%     smith_circle(1.5 + j*1.1, 2.1, 'k:', 64) 

%     smith_circles([ 0 -1 1 -j*1 j*1 ], [ 1 1 1 1 1 ], 'r-.', 2048) 

% 

%   See also: SMITH.M 

 

% Check the number of inputs. 

error(nargchk(2, 4, nargin)); 

 

% Set default values. 

if nargin < 3 

  % This is Matlab's default. 

  colour_linestyle = 'b-'; 

end 

if nargin < 4 

  segments = 256; 

end 

 

% This values is used a number of times below, so let us calculate it 

% once here rather than many times below. 

ac = abs(centre); 

 

% Find the circles that are entirely inside the Smith Chart. 

inside = find(ac + radius <= 1); 

% Find circles that intersect the Smith Chart boundary. 

intersect = find((ac + radius > 1) & (abs(ac - radius) < 1)); 

% The other circles are all completely outside the Smith Chart or the 

% Smith Chart is completely inside the circles - either way, they do not 

% have to be plotted. 

 

% The sizes of inside and intersect are used rather a lot, so they are 

% stored in variables. 

size_inside = numel(inside); 

size_intersect = numel(intersect); 

 

% Allocate memory for the points on the circles 

z = zeros(segments + 1, size_inside + size_intersect); 

 



% Circles that are entirely inside the Smith Chart 

if size_inside > 0 

 

  % The angles from the centres of the circles to the points to be plotted.  I 

  % have to add 1 to the number of segments because there is one more point 

  % than there are segments. 

  theta = linspace(-pi, pi, segments + 1)'; 

 

  % Find the points on the circles. 

  z(:, (1:size_inside)) = ones(size(theta))*centre(inside) + ... 

      exp(j*theta)*radius(inside); 

 

end 

 

% Circles that intersect the Smith Chart boundary. 

if size_intersect > 0 

 

  % Find the angles to the intercept points. 

  % The angle from the centre to the intercept points relative to the angle to 

  % the centre is calculated.  This calculation is based on the well-known 

  % relationship: 

  % c^2 = a^2 + b^2 - 2*a*b*cos(theta) 

  % Note that there is a -1 factor implicit in the next line which 

  % ensures that the correct angle is used. 

  theta_p = acos((1 - radius(intersect).^2 - ac(intersect).^2)./ ... 

                 (2.*radius(intersect).*ac(intersect))); 

  theta_1 = angle(centre(intersect)) - theta_p; 

  theta_2 = angle(centre(intersect)) + theta_p; 

  % I need to change the order of these angles to get the part of the circle 

  % that is inside the Smith Chart boundary. 

  theta_1 = theta_1 + 2*pi; 

 

  % The angles from the centres of the circles to the points to be plotted.  I 

  % have to add 1 to the number of segments because there is one more point 

  % than there are segments. 

  theta = ones(segments + 1, 1)*theta_1 + ... 

          linspace(0, 1, segments + 1)'*(theta_2 - theta_1); 

 

  % Find the points on the circles. 

  z(:, ((size_inside + 1):(size_inside + size_intersect))) = ... 

      ones(segments + 1, 1)*centre(intersect) + ... 

      exp(j*theta).*(ones(segments + 1, 1)*radius(intersect)); 

 

end 

 

% Finally, plot all the circles. 

plot(z, colour_linestyle); 

 

Plot the Scattering Parameters as a Function of Frequency: 
%S Parameters Plotted on Smith Chart  

data = read(rfdata.data,'Spar_BFG403W_commonemitter2V3mA.S2P'); 

freq = data.Freq; 

s_params = extract(data,'S_PARAMETERS',50); 

y_params = extract(data,'Y_PARAMETERS'); 

  

s11 = s_params(1,1,:); 

smithchart(s11(:)); 

hold on 

s22 = s_params(2,2,:); 



smithchart(s22(:)); 

legend('s11','s22'); 

s21 = s_params(2,1,:); 

smithchart(s21(:)); 

s12 = s_params(1,2,:); 

smithchart(s12(:)); 

legend('s11','s22','s21','s12'); 

 

Plot the Stability Circles on a Smith Chart: 
%Stability Circles and Operating Gain 

amp = read(rfckt.amplifier,'Spar_BFG403W_commonemitter2V3mA.S2P'); 

fc = 2.437e9; 

circle(amp,fc,'Stab','In','Stab','Out','Gp',17:-1:13); 

legend('Location','SouthEast') 

 

Plot the Input and Output Gain Circles on a Smith Chart: 
%Uses gs, center of gs and radius of gs to plot input gain circles 

s11 = 0.255202 - j*0.474756; 

s21 = -0.21819 + j*4.77001; 

s12 = 0.01343+ j*0.018671; 

s22 = 0.59579 - j*0.57643; 

 

amp = read(rfckt.amplifier,'Spar_BFG403W_commonemitter2V3mA.S2P'); 

fc = 2.4e9; 

delta = s11*s22 - s12*s21 ; 

Cout = ( conj(s22)-conj(delta)*s11 ) / ( abs(s22)^2-abs(delta)^2) ; 

Rout = abs(( s12 * s21 ) / ( abs(s22)^2-abs(delta)^2 )) ; 

Cin = ( conj(s11)-conj(delta)*s22 ) / ( abs(s11)^2-abs(delta)^2 ) ;  

Rin = abs(( s12 * s21 ) / ( abs(s11)^2-abs(delta)^2 )) ; 

 

gamma_in = s11 ; 

gamma_out = s22 ; 

gamma_S = conj(s11) ; 

gamma_L = conj(s22) ; 

 

%Calculating Center and Radius of Input Stability Gain Circles 

Gs = (1 - (abs(gamma_S))^2)/((abs(1-(gamma_S)*(s11)))^2); 

Gs_dB = 10*log10(Gs); 

Gs_Max = 1/(1-(abs(s11)^2)); 

Gs_Max_dB = 10*log10(Gs_Max) 

G0 = (abs(s21))^2; 

G0_dB = 10*log10(G0); 

GL = (1 - (abs(gamma_L)^2))/((abs(1-(gamma_L)*(s22)))^2); 

GL_dB = 10*log10(GL); 

GL_Max = 1/(1-(abs(s22)^2)); 

GL_Max_dB = 10*log10(GL_Max); 

Gtu = Gs*G0*GL; 

Gtu_dB = Gs_dB + G0_dB + GL_dB; 

Gtu_Max = Gs_Max*G0*GL_Max; 

Gtu_Max_dB = Gs_Max_dB + G0_dB + GL_Max_dB 

 

%Calculating Output Stability Gain Circles 

gl = GL_Max*(1-(abs(s22)^2)); 

cgl = (gl*conj(s22))/(1 - ((abs(s22)^2)*(1-gl))); 

rgl = (((1-gl)^0.5)*(1-(abs(s22)^2)))/(1-((abs(s22)^2)*(1-gl))); 

%1dB less 

GL_1dB = exp(((GL_Max_dB - 1)*log(10))/10); 



gl_1dB = GL_1dB*(1-(abs(s22)^2)); 

cgl_1dB = (gl_1dB*conj(s22))/(1 - ((abs(s22)^2)*(1-gl_1dB))); 

rgl_1dB = (((1-gl_1dB)^0.5)*(1-(abs(s22)^2)))/(1-((abs(s22)^2)*(1-gl_1dB))); 

%2dB less 

GL_2dB = exp(((GL_Max_dB - 2)*log(10))/10); 

gl_2dB = GL_2dB*(1-(abs(s22)^2)); 

cgl_2dB = (gl_2dB*conj(s22))/(1 - ((abs(s22)^2)*(1-gl_2dB))); 

rgl_2dB = (((1-gl_2dB)^0.5)*(1-(abs(s22)^2)))/(1-((abs(s22)^2)*(1-gl_2dB))); 

%3dB less 

GL_3dB = exp(((GL_Max_dB - 3)*log(10))/10); 

gl_3dB = GL_3dB*(1-(abs(s22)^2)); 

cgl_3dB = (gl_3dB*conj(s22))/(1 - ((abs(s22)^2)*(1-gl_3dB))); 

rgl_3dB = (((1-gl_3dB)^0.5)*(1-(abs(s22)^2)))/(1-((abs(s22)^2)*(1-gl_3dB))); 

%4dB less 

GL_4dB = exp(((GL_Max_dB - 4)*log(10))/10); 

gl_4dB = GL_4dB*(1-(abs(s22)^2)); 

cgl_4dB = (gl_4dB*conj(s22))/(1 - ((abs(s22)^2)*(1-gl_4dB))); 

rgl_4dB = (((1-gl_4dB)^0.5)*(1-(abs(s22)^2)))/(1-((abs(s22)^2)*(1-gl_4dB))); 

 

 

%Calculating K Factor and B parameters 

K = (1 - (abs(s11)^2) - (abs(s22)^2) + (abs(delta)^2))/(2*(abs(s12*s21))) 

B = 1 + (abs(s11)^2) - (abs(s22)^2) - (abs(delta)^2) 

 

gs = Gs_Max*(1-(abs(s11)^2)); 

cgs = (gs*conj(s11))/(1 - ((abs(s11)^2)*(1-gs))); 

rgs = ((1-gs)^0.5)*(1-(abs(s11)^2))/(1-((abs(s11)^2)*(1-gs))); 

%Calculating Input Stability Gain Circles 

Gs_1dB = exp(((Gs_Max_dB - 1)*log(10))/10); 

gs_1dB = Gs_1dB*(1-(abs(s11)^2)); 

cgs_1dB = (gs_1dB*conj(s11))/(1 - ((abs(s11)^2)*(1-gs_1dB))); 

rgs_1dB = (((1-gs_1dB)^0.5)*(1-(abs(s11)^2)))/(1-((abs(s11)^2)*(1-gs_1dB))); 

 

Gs_2dB = exp(((Gs_Max_dB - 2)*log(10))/10); 

gs_2dB = Gs_2dB*(1-(abs(s11)^2)); 

cgs_2dB = (gs_2dB*conj(s11))/(1 - ((abs(s11)^2)*(1-gs_2dB))); 

rgs_2dB = (((1-gs_2dB)^0.5)*(1-(abs(s11)^2)))/(1-((abs(s11)^2)*(1-gs_2dB))); 

 

Gs_3dB = exp(((Gs_Max_dB - 3)*log(10))/10); 

gs_3dB = Gs_3dB*(1-(abs(s11)^2)); 

cgs_3dB = (gs_3dB*conj(s11))/(1 - ((abs(s11)^2)*(1-gs_3dB))); 

rgs_3dB = (((1-gs_3dB)^0.5)*(1-(abs(s11)^2)))/(1-((abs(s11)^2)*(1-gs_3dB))); 

 

%%%%%%%%Plotting Input Stability Gain Circles%%%%%%%%%% 

smithchart; 

hold on; 

smith_circles(cgs, rgs, 'g', 2048) 

hold on 

%1 dB less 

smith_circles(cgs_1dB, rgs_1dB, 'k', 2048) 

hold on 

%2 dB less 

smith_circles(cgs_2dB, rgs_2dB, 'y', 2048) 

hold off 

%Plotting Output Stability Gain Circles 

 

smithchart; 

hold on; 

smith_circles(cgl, rgl, 'g', 2048) 

hold on 

%1 dB less 



smith_circles(cgl_1dB, rgl_1dB, 'k', 2048) 

hold on 

%2 dB less 

smith_circles(cgl_2dB, rgl_2dB, 'y', 2048) 

hold on 

%3 dB less 

smith_circles(cgl_3dB, rgl_3dB, 'b', 2048) 

hold on 

%4 dB less 

smith_circles(cgl_4dB, rgl_4dB, 'r', 2048) 
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